Gromov’s compactness theorem for pseudo holomorphic curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Compactness Theorem for Genus-One Pseudo-Holomorphic Maps

For each compact almost Kahler manifold (X,ω, J) and an element A of H2(X ;Z), we describe a natural closed subspace M 0 1,k(X,A; J) of the moduli space M1,k(X,A; J) of stable J-holomorphic genus-one maps such that M 0 1,k(X,A; J) contains all stable maps with smooth domains. If (P, ω, J0) is the standard complex projective space, M 0 1,k(P , A; J0) is an irreducible component of M1,k(P, A; J0)...

متن کامل

Holomorphic curves in Exploded Torus Fibrations: Compactness

The category of exploded torus fibrations is an extension of the category of smooth manifolds in which some adiabatic limits look smooth. (For example, the type of limits considered in tropical geometry appear smooth.) In this paper, we prove a compactness theorem for (pseudo)holomorphic curves in exploded torus fibrations. In the case of smooth manifolds, this is just a version of Gromov’s com...

متن کامل

Part 2: Pseudo-holomorphic Curves

1. Properties of J-holomorphic curves 1 1.1. Basic definitions 1 1.2. Unique continuation and critical points 5 1.3. Simple curves 8 1.4. Adjunction inequality 9 2. Gromov compactness 12 2.1. Gromov compactness theorem 12 2.2. Energy estimate and bubbling 15 2.3. The isoperimetric inequality 19 2.4. Bubbles connect 22 3. Moduli spaces of J-holomorphic curves 25 3.1. The Fredholm setup 25 3.2. T...

متن کامل

A Picard type theorem for holomorphic curves∗

Let P be complex projective space of dimension m, π : Cm+1\{0} → P the standard projection and M ⊂ P a closed subset (with respect to the usual topology of a real manifold of dimension 2m). A hypersurface in P is the projection of the set of zeros of a non-constant homogeneous form in m+ 1 variables. Let n be a positive integer. Consider a set of hypersurfaces {Hj} j=1 with the property M ∩ ⋂...

متن کامل

Pseudo holomorphic curves in symplectic manifolds

Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called a (non-parametrized) J-curve in V. A curve C C V is called closed if it can be (holomorphically !) parametrized by a closed surface S. We call C regular if there is a parametrization f : S ~ V whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1994

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1994-1176088-1